5 research outputs found

    Stability of quantized conductance levels in memristors with copper filaments: toward understanding the mechanisms of resistive switching

    Full text link
    Memristors are among the most promising elements for modern microelectronics, having unique properties such as quasi-continuous change of conductance and long-term storage of resistive states. However, identifying the physical mechanisms of resistive switching and evolution of conductive filaments in such structures still remains a major challenge. In this work, aiming at a better understanding of these phenomena, we experimentally investigate an unusual effect of enhanced conductive filament stability in memristors with copper filaments under the applied voltage and present a simplified theoretical model of the effect of a quantum current through a filament on its shape. Our semi-quantitative, continuous model predicts, indeed, that for a thin filament, the "quantum pressure" exerted on its walls by the recoil of charge carriers can well compete with the surface tension and crucially affect the evolution of the filament profile at the voltages around 1V. At lower voltages, the quantum pressure is expected to provide extra stability to the filaments supporting quantized conductance, which we also reveal experimentally using a novel methodology focusing on retention statistics. Our results indicate that the recoil effects could potentially be important for resistive switching in memristive devices with metallic filaments and that taking them into account in rational design of memristors could help achieve their better retention and plasticity characteristics.Comment: version accepted for publication in Phys. Rev. Applied, including improved statistic

    Convolutional Neural Network Based on Crossbar Arrays of (Co-Fe-B)<i><sub>x</sub></i>(LiNbO<sub>3</sub>)<sub>100−<i>x</i></sub> Nanocomposite Memristors

    No full text
    Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization. Here, we propose a hybrid CNN, consisting of a hardware fixed pre-trained and explainable feature extractor and a trainable software classifier. The hardware part was realized on passive crossbar arrays of memristors based on nanocomposite (Co-Fe-B)x(LiNbO3)100−x structures. The constructed 2-kernel CNN was able to classify the binarized Fashion-MNIST dataset with ~ 84% accuracy. The performance of the hybrid CNN is comparable to the other reported memristor-based systems, while the number of trainable parameters for the hybrid CNN is substantially lower. Moreover, the hybrid CNN is robust to the variations in the memristive characteristics: dispersion of 20% leads to only a 3% accuracy decrease. The obtained results pave the way for the efficient and reliable realization of neural networks based on partially unreliable analog elements
    corecore